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     Abstract: - In this study, an estimation algorithm based on a two-stage Kalman filter (TSKF) was developed 
for wind speed and Unmanned Aerial Vehicle (UAV) motion parameters. In the first stage, the wind speed 
estimation algorithm is developed by the usage of GPS measurements and dynamic pressure measurements.  
For this purpose, Extended Kalman Filter (EKF) was designed. The wind speed is estimated by the EKF 
using GPS and pitot tube measurements. Here, the wind speed components and pitot scale factor are 
considered as state vector variables. As there is no information of the state dynamics, dynamic equations are 
expressed in this case by random walk process. In the second stage, the estimation of the state parameters of 
the UAV dynamic model was made based on the Air Data System (ADS) and IMU measurements by using 
the Linear Kalman filter (LKF). The second stage filter uses ADS pitot tube, angle of attack and side sleep 
angle measurements, IMU attitude angle and velocity measurements, and the first stage EKF estimates of 
the wind speed values.  

     Key-Words: - Unmanned Aerial Vehicle, State estimation, Kalman filter, Wind speed, GPS, Pitot tube,  
     Air Data System 

 
 

1 Introduction 

In this work, the wind field is estimated for both 
horizontal and vertical wind using GPS and pitot 
tube measurements.  Estimation of the wind 
field is useful in UAV applications for various 
objectives such as dropping objects, target 
tracking,  automatic control, trajectory 
optimization, and air traffic control [1]. There is 
some existing work in the area of wind 
estimation. A Kalman-like filter is derived in [2] 
for wind velocity estimation based on magnetic 
heading, true airspeed, and radar measurements. 
This filter is called the velocity bias filter for 
wind estimation.  
In [3] the problem of aircraft wind velocity 
estimation is performed using the aircraft 
dynamic response rather than the wind triangle  

 
relationship. In this method, it is assumed that the 
mathematical model of the aircraft is perfectly 
known. The primary limitation of these types of 
wind estimation methods is the requirement of a 
known aircraft model. This can be very limiting for 
some type of aircrafts where the model has not yet 
been derived, or additional system uncertainties have 
been introduced. For the wind velocity estimation 
purpose, in [1] the GPS velocity components are 
properly related to the body-axis velocity 
components through the consideration of wind. It 
considers the wind triangle of airspeed, ground 
speed, and wind speed. Because of this adjustment, 
the estimated attitude states correspond to the actual 
orientation of the aircraft with respect to the fixed 
Earth. It was shown that this attitude estimation 
method is effective in distinguishing the roll and 
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yaw angles of the aircraft, and providing a 
reasonable estimate of the local wind field. 

A horizontal wind estimation method using the 
Extended Kalman Filter (EKF) is presented in [4]. In 
this work the horizontal wind speed is predicted 
using a random walk noise assumption, and then 
these states were regulated through the wind triangle 
comparison of ground speed from GPS and air 
speed.  
     The study [5] describes the extended Kalman 
filter based method to estimate the airflow angles 
and three-dimensional wind speed under constant 
wind condition. In addition, it can correct the 
scaling error of the airspeed of an aircraft. It uses 
the airspeed measurements, constant wind condition 
and the sideslip angle computed from GPS/INS 
navigation data and stability and control derivatives 
estimated from flight data. Estimated wind speed 
can also be used to reconstruct the GPS/INS 
navigation system by correcting the airspeed in the 
case of GPS failure. 
     In this study, an estimation algorithm based on a 
two-stage Kalman filter (TSKF) was developed for 
wind speed and UAV motion parameters. In the first 
stage, the wind speed estimation EKF is developed 
by the usage of GPS measurements and dynamic 
pressure measurements. In the second stage, the 
estimation of the state parameters of the UAV 
dynamic model was made based on the Air Data 
System (ADS) and IMU measurements by using the 
Linear Kalman filter (LKF).  

2 Problem Formulations 
This work considers the estimation of aircraft body-
axis velocity components (u, v, w), Euler attitude 
angles (φ, θ, ψ), and three-axis wind velocity 
components (μx, μy, μz). This estimation is 
performed through the functional fusion of inertial 
measurement unit (IMU) measurements of three-
axis accelerations (ax, ay, az) and angular rates (p, q, 
r), GPS velocity components (Vx, Vy, Vz), and ADS 
measurements from pitot tube ( pitotV )  and wind 
vane measurements of angle of attack (α) and 
sideslip angle (β). 
     As the dynamics of the local wind field is 
unpredictable because of its random nature, the 
wind velocity dynamics are modeled using random 
walk process [4] 
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where pw  is the zero-mean Gaussian noise vector 
with the process noise covariance matrix pQ . 
The UAV state equation is given in a discrete-time 
linear state space format 

 ( ) ( 1), ( 1), ( 1)x k f x k u k w k           (2)                   

where f  is the nonlinear discrete-time state 
transition function, u  is the control input vector, 
which is composed of the control surface deflections 
and wind velocity, w  is the system noise vector with 
covariance matrix Q . 

In order to define the velocity components in the 
Earth-fixed frame, a transformation needs to be 
done using the matrix  , ,A     from the body 
frame as [1] 
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       (3)                   

     A simple output equation can be defined 
using the x-body axis airspeed measurements of 
the pitot tube, which is mounted on the aircraft 
along the longitudinal axis, as, 

pitotV u                       (4)                   

By using the body-axis velocity components, 
angles of attack and sideslip can be calculated 
as, 

arctan w

u
    

 
                   (5)                   

2 2 2
arcsin v

u w v


 
  

  
         (6)                   

Then, the measurement equations can be defined in 
the following form 

 ( ) ( ) ( )mz k h x k v k          (7)                  

where h  is the nonlinear measurement function and 

mv  is the zero-mean Gaussian measurement noise 
vector with covariance matrix R . The measurement 
vector z  comprises of GPS velocity measurements, 
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Pitot tube airspeed, and wind vane angle of attack 
and side sleep angle measurements.   
   It is required to estimate the wind speed, ADS 
scale factor and UAV states on the measurements 
(7). 

3  UAV State Estimation Filter 
Let us consider the flight dynamics of UAV 
described by the linear state equation as, 
 

( 1) ( ) ( ) ( )x k Ax k Bu k Gw k             (8)                                                              

and measurement equation 

                  ( ) ( ) ( ) ( )z k H k x k V k  ,                      (9)                                                                       

where ( )x k  is the vector of system state; A is the  
transition matrix of the system; B is the control 
distribution matrix; u(k) is the control input vector; 

( )w k  is the random vector of disturbances (system 
noise); G is the transition matrix of system noise; 
z(k) is the vector of measurements; ( )H k  is the 
matrix of measurements of the system; and ( )V k is 
the random vector of measurement noise. Assume 
that random vectors ( )w k and ( )V k  are Gaussian 
white noise. Their mean values and covariance are 
determined by the expressions 

   ( ) 0; ( ) 0;

( ) ( ) ( ) ( );

( ) ( ) ( ) ( ).
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                (10)                                                                      

Here E is the operator of statistical expectation; T is 
the sign of transposition; and (kj) is the Kronecker 
delta symbol. Note that { }( )w k and { }( )V k  are 
assumed mutually uncorrelated. 
     Apparently [6], the optimum linear Kalman filter 
(LKF) that estimates the state vector of the system 
(1) is expressed with the following recursive 
equations system: 

     Equation of   the estimation value, 

 ˆ ˆ ˆ( / ) ( / 1) ( ) ( ) ( ) ( / 1)x k k x k k K k z k H k x k k    
                                            (11)                                                          

where ˆ ˆ( / 1) ( 1/ 1) ( 1)x k k Ax k k Bu k       is  the 
extrapolation value, ( )K k is  the   gain matrix  of  the  
optimum linear Kalman filter: 

1
( ) ( / 1) ( ) ( ) ( / 1) ( ) ( )T TK k P k k H k H k P k k H k R k


     

                                           (12) 

    The innovation sequence 

              ˆ( ) ( ) ( ) ( / 1)k z k H k x k k          (13)                   

    The innovation covariance 

( ) ( ) ( / 1) ( ) ( )TP k H k P k k H k R k             (14)                   

The normalized innovation     
1
2( ) ( ) ( / 1) ( ) ( ) ( )Tk H k P k k H k R k k


          (15)                   

The covariance matrix of the filtering error is, 

 ( / ) ( ) ( ) ( / 1)P k k I K k H k P k k           (16)                   

where I  is the identity matrix. 

       The covariance matrix of the extrapolation error 
is, 

( / 1) ( 1 / 1) ( 1)T TP k k AP k k A GQ k G            (17)                     

4 Wind Velocity Estimation Filter 
Nonlinear state-space formulations of wind velocity 
estimation problem of unmanned aerial vehicle are 
discussed. As the formulation uses the relationship 
of the wind triangle, it is necessary to have 
knowledge of both the ground and air speed. The 
formulations considered use the pitot-static tube air 
speed and the global positioning system (GPS) 
velocity estimates. 
     Here, state vector includes north  N , east  E

, down  D  components of the wind velocity and 

the scale factor   .  
     The effects of the sideslip angle, angle of attack 
and the air density parameters can be estimated by 
using the scale factor. State-space system is 
composed of state vector x, input vector u , and 
output vector y [7] 

 TN E Dx                   (18)                   

TGPS GPS GPS
N E Du V V V                   (19)                   

dy P                              (20)                   
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Here , ,GPS GPS GPS
N E DV V V are the ground velocity 

measurement components by GPS, dP  is the 
dynamic pressure measurements by pitot-static tube. 
As there is no information of the state dynamics, 
dynamic equations are expressed by random walk 
process: 

( ) ( 1) ( 1)px k x k w k                               (21)                                   

where ww  is the zero-mean Gaussian system noise 
vector with the process covariance matrix 

wQ . 
Output vector can be composed by using wind 
triangle relationship. 

air ground windV V V 
  

               (22)                                                    

, ,air ground windV V V
  

 represent air, ground and wind 
velocity vectors in NED coordinate system 
respectively. Let’s take square of the each side of 

the equation’s 2L  norm as, 

     

2 2

2 2
2 2 22

air ground wind

GPS GPS GPS
air N N E E D D

V V V

V V V V  

 

     

  

   (23)                                

The air speed of pitot-static tube  pitotV  can be 

expressed in terms of total air speed  airV , angle of 

attack    and sideslip angle   , 

cos cospitot airV V                (24)                                           

Dynamic pressure can be written considering the 
Bernoulli equation as: 

2d pitotP V


                    (25)                                               

 represents the air density. So, the scale factor 

   can be written as: 

   2 2cos cos
2
                 (26)                                                    

If all of these combined, the output vector equation 
becomes: 

     2 2 2GPS GPS GPS
d N N E E D D pP V V V v            

                       (27) 

where  pv is zero-mean Gaussian measurement noise 

with the measurement covariance matrix pR . 
    Let’s move linear state model (21) into (8) form 

( 1) ( ) ( )px k Ax k Gw k               (28)                   

where A  and G are the 4x4 unit matrices. 

  The measurement equation (27) is nonlinear and 
can be written in the form: 

 ( ) ( ), ( )pz k h x k k v k               (29)                   

where  h   are the nonlinear measurement function,
( )x k   is the 4 dimensional state vector at time k, 
( )z k  is the scalar measurement, ( )pv k is the zero-

mean Gaussian noise with covariance pR . It  is  
assumed  that  both  noise  vectors ( )pw k  and  ( )pv k  
are  linearly additive  Gaussian, temporally  
uncorrelated  with  zero  mean, 

   ( ) ( ) 0,    E w k E v k k          (30)                   

Filter algorithm based on the described system and 
measurements in (28)-(29) can be given. The 
estimation of states (18) can be found based on the 
Extended Kalman filter (EKF). The estimation value 
by EKF can be found as, 

  
ˆ ˆ( / ) ( / 1) ( )

ˆ               ( ) ( / 1, )

x k k x k k K k

z k h x k k k

  

  
     (31)                  

The extrapolation value from the dynamic function 
can be found as, 

ˆ ˆ( / 1) ( 1/ 1)x k k Ax k k              (32)                  

Filter-gain of the EKF is, 

1

ˆ[ ( / 1), ]( ) ( / 1)
ˆ( / 1)

ˆ ˆ[ ( / 1), ] [ ( / 1), ]( / 1) ( )
ˆ ˆ( / 1) ( / 1)

T

T

h x k k k
K k P k k

x k k

h x k k k h x k k k
P k k R k

x k k x k k



 
 

 

    
   

    
                            (33) 

where ˆ[ ( / 1), ]
ˆ( / 1)

h x k k k

x k k

 
 

 is the partial derivatives of 

the measurement function with respect to the states.  
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The covariance matrix of the extrapolation error is,   

( / 1) ( 1 / 1) ( 1)T TP k k AP k k A GQ k G           (34)                                     

The covariance matrix of the filtering error is, 

ˆ[ ( / 1), ]( / ) ( ) ( / 1)
ˆ( / 1)

h x k k k
P k k I K k P k k

x k k

  
     

    (35)                                    

where I  is the identity matrix. 

The innovation sequence is presented as, 

 ˆ( ) ( ) ( / 1),k z k h x k k k            (36)                                         

     The innovation covariance is, 

ˆ[ ( / 1), ]( ) ( / 1)
ˆ( / 1)

ˆ[ ( / 1), ] ( )
ˆ( / 1)

T

h x k k k
P k P k k

x k k

h x k k k
R k
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
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 

 

 
 
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   (37)                            

The normalized innovation can be expressed in the 

form,                                                           

0.5

ˆ[ ( / 1), ]( ) [ ( / 1)
ˆ( / 1)

ˆ[ ( / 1), ] ( )] ( )     
ˆ( / 1)

          

T

h x k k k
k P k k

x k k

h x k k k
R k k

x k k


 
   

 

 
 

 



              (38) 

EKF that estimates the state vector of the system 
(30) is expressed with the formulas (31) - (38). 

5  TSKF Simulation Results  
The wind speed and longitudinal and lateral motion 
parameters of UAV are estimated via proposed 
TSKF. Simulation results are given in Figs. 2-4. 
Estimations of wind speed, longitudinal motion 
parameters and lateral motion parameters are 
presented in Figs. 1, 2, 3 respectively. In these 
figures blue line shows the actual values and red 
line - estimated values. The obtained results show 
that, the wind speed and UAV state estimations 
converge to actual values. 
     The normalized innovation corresponding to the 
first stage filter is presented in Fig 4.  Behavior of 

the normalized innovation approve that the TSKF 
operates properly. 

 

Fig.1. Wind speed estimation results: actual value- 
blue line; estimated value- red line.  

 

Fig.2. Estimation results of the longitudinal motion 
parameters: actual value-blue line; estimated value-
red line.  
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Fig.3. Estimation results of the lateral motion 
parameters: actual value-blue line; estimated value- 
red line.  

 

Fig.4. Normalized innovation of the first stage filter 

6  Conclusion 
In this work a two-stage Kalman filter was 
developed for estimation of the wind speed and 
UAV states. In the first stage, the wind speed 
estimation algorithm is developed by the usage of 
GPS and dynamic pressure measurements. For this 
purpose, Extended Kalman Filter based on nonlinear 
measurements was designed.  
     In the second stage, the estimation of the state 
parameters of the UAV dynamic model was made 
by using the Conventional Linear Kalman filter 
based on the Air Data System and IMU 
measurements.   
     Simulations showed that the proposed two-stage 
estimation procedure has the ability to estimate the 
wind speed and UAV states with a high accuracy 
performance. 
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